Disjunctive cuts in Mixed-Integer Conic Optimization

نویسندگان

چکیده

This paper studies disjunctive cutting planes in Mixed-Integer Conic Programming. Building on conic duality, we formulate a cut-generating program for separating cuts, and investigate the impact of normalization condition its resolution. In particular, show that careful selection guarantees solvability strong duality. Then, highlight shortcomings conic-infeasible points an outer-approximation context, propose extensions to classical lifting monoidal strengthening procedures. Finally, assess computational behavior various conditions terms gap closed, computing time cut sparsity. process, our approach is competitive with internal lift-and-project cuts state-of-the-art solver.

منابع مشابه

Disjunctive Conic Cuts for Mixed Integer Second Order Cone Optimization

We investigate the derivation of disjunctive conic cuts for mixed integer second order cone optimization (MISOCO). These conic cuts characterize the convex hull of the intersection of a disjunctive set and the feasible set of a MISOCO problem. We present a full characterization of these inequalities when the disjunctive set considered is defined by parallel hyperplanes.

متن کامل

Conic mixed-integer rounding cuts

A conic integer program is an integer programming problem with conic constraints.Manyproblems infinance, engineering, statistical learning, andprobabilistic optimization aremodeled using conic constraints. Herewe studymixed-integer sets definedby second-order conic constraints.We introduce general-purpose cuts for conic mixed-integer programming based on polyhedral conic substructures of second...

متن کامل

A complete characterization of disjunctive conic cuts for mixed integer second order cone optimization

We study the convex hull of the intersection of a disjunctive set defined by parallel hyperplanes and the feasible set of a mixed integer second order cone optimization (MISOCO) problem. We extend our prior work on disjunctive conic cuts (DCCs), which has thus far been restricted to the case in which the intersection of the hyperplanes and the feasible set is bounded. Using a similar technique,...

متن کامل

Cuts for Conic Mixed-Integer Programming

A conic integer program is an integer programming problem with conic constraints. Conic integer programming has important applications in finance, engineering, statistical learning, and probabilistic integer programming. Here we study mixed-integer sets defined by second-order conic constraints. We describe general-purpose conic mixed-integer rounding cuts based on polyhedral conic substructure...

متن کامل

Forthcoming in Mathematical Programming CONIC MIXED-INTEGER ROUNDING CUTS

A conic integer program is an integer programming problem with conic constraints. Many problems in finance, engineering, statistical learning, and probabilistic optimization are modeled using conic constraints. Here we study mixed-integer sets defined by second-order conic constraints. We introduce general-purpose cuts for conic mixed-integer programming based on polyhedral conic substructures ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Programming

سال: 2022

ISSN: ['0025-5610', '1436-4646']

DOI: https://doi.org/10.1007/s10107-022-01844-1